Thursday, June 21, 2007

Valgrind 使用初探

 Valgrind 是在linux系统下开发应用程序时用于调试内存问题的工具。它尤其擅长发现内存管理的问题,它可以检查程序运行时的内存泄漏问题。
 
   它的官方网址是 http://www.valgrind.org/
 
   下载最新版本的Valgrind,目前是3.2.0。 wget http://www.valgrind.org/downloads/valkyrie-1.2.0.tar.bz2
 
   执行常规的安装步骤:./confgure && make && make install。注意: 系统必须安装QT的开发包。即便这样在make 时还是出现qplatformdefs.h这个文件找不到的情况,导致make失败。查找系统中的qplatformdefs.h 之后,发现没有存在于qt的标准头文件目录/usr/lib/qt-3.3/include。如是将/usr/lib/qt-3.3/mkspecs/linux-g++/ 目录下该头文件复制标准头文件目录,重新make ,后面一切OK。
初次使用
    编译如下代码:  gcc -Wall example.c -g -o example
#include <stdlib.h>
 
void f(void)
{
   int* x = malloc(10 * sizeof(int));
   x[10] = 0;        // problem 1: heap block overrun
}                    // problem 2: memory leak -- x not freed
 
int main(void)
{
     f();
     return 0;
}
 

     注意:gcc 的-g 选项让Valgrind调试输出时指出相应信息的代码所在的行号。
 
  valgrind --tool=memcheck --leak-check=yes ./example
 
==6742== Memcheck, a memory error detector for x86-linux.
==6742== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward et al.
==6742== Using valgrind-2.2.0, a program supervision framework for x86-linux.
==6742== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward et al.
==6742== For more details, rerun with: -v
==6742==
==6742== Invalid write of size 4
==6742==    at 0x8048384: f (example.c:6)
==6742==    by 0x80483AC: main (example.c:12)
==6742==  Address 0x1B908050 is 0 bytes after a block of size 40 alloc'd
==6742==    at 0x1B904984: malloc (vg_replace_malloc.c:131)
==6742==    by 0x8048377: f (example.c:5)
==6742==    by 0x80483AC: main (example.c:12)
==6742==
==6742== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 12 from 1)
==6742== malloc/free: in use at exit: 40 bytes in 1 blocks.
==6742== malloc/free: 1 allocs, 0 frees, 40 bytes allocated.
==6742== For counts of detected errors, rerun with: -v
==6742== searching for pointers to 1 not-freed blocks.
==6742== checked 1360800 bytes.
==6742==
==6742==
==6742== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==6742==    at 0x1B904984: malloc (vg_replace_malloc.c:131)
==6742==    by 0x8048377: f (example.c:5)
==6742==    by 0x80483AC: main (example.c:12)
==6742==
==6742== LEAK SUMMARY:
==6742==    definitely lost: 40 bytes in 1 blocks.
==6742==    possibly lost:   0 bytes in 0 blocks.
==6742==    still reachable: 0 bytes in 0 blocks.
==6742==         suppressed: 0 bytes in 0 blocks.
==6742== Reachable blocks (those to which a pointer was found) are not shown.
==6742== To see them, rerun with: --show-reachable=yes
 

   上面的C程序存在两个错误:1. 数组下标越界;2. 分配的内存没有释放,存在内存泄露的问题。对于错误1,看Valgrind的调试信息片断 ==6742== Invalid write of size 4
==6742==    at 0x8048384: f (example.c:6)
==6742==    by 0x80483AC: main (example.c:12)
==6742==  Address 0x1B908050 is 0 bytes after a block of size 40 alloc'd
==6742==    at 0x1B904984: malloc (vg_replace_malloc.c:131)
==6742==    by 0x8048377: f (example.c:5)
 

对于错误2,看这个
==6742== malloc/free: 1 allocs, 0 frees, 40 bytes allocated.
 
......
 
==6742== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==6742==    at 0x1B904984: malloc (vg_replace_malloc.c:131)
==6742==    by 0x8048377: f (example.c:5)
==6742==    by 0x80483AC: main (example.c:12)
 

 
 
 
 
相关链接:
 
 

Tuesday, June 19, 2007

oSIP在windows下的安装和使用

oSIP在windows下的安装和使用
作者:zyjzyj2000 日期:2007-4-23 17:19:00
刚好有一篇osip安装的文档,环境是(Windows xp sp2 + VC 6) 写的不错,还有例子。转过来请参考。
注: 文中的platform SDK包到http://www.image2003.com/softdown/3344520.asp?id=38&url=1 下载。 记住VC6要在tools->options->directories 中的include files,executable files,Library files的 VC6自带目录前面加入SDK的目录。

oSIP协议栈使用(原创+持续更新中)

  一直没空仔细研究下oSIP,最近看到其版本已经到了3.x版本,看到网上的许多帮助说明手册都过于陈旧,且很多文档内容有点误人子弟的嫌疑~~
  
  Linux下oSIP的编译使用应该是很简单的,其Install说明文档里也介绍的比较清楚,本文主要就oSIP在Windows平台下VC6.0开发环境下的使用作出描述。
  虽然oSIP的开发人员也说明了,oSIP只使用了标准C开发库,但许多人在Windows下使用oSIP时,第一步就被卡住了,得不到oSIP的LIB库和DLL库,也就没有办法将oSIP使用到自己的程序中去,所以第一步,我们将学习如何得到oSIP的静态和动态链接库,以便我们自己的程序能够使用它们来成功编译和执行我们的程序。

------------------------------------------------------
  先创建新工程,网上许多文档都介绍创建一个Win32动态链接库工程,我们这里也一样,创建一个空白的工程保存。
  同样,将oSIP2版本3.0.1 src目录下的Osipparser2目录下的所有文件都拷到我们刚创建的工程的根目录下,在VC6上操作:
       Project-Add To Project-Files
  将所有的源程序和头文件都加入到工程内,保存工程。
  这时,我们可以尝试编译一下工程,你会得到许多错误提示信息,其内容无非是找不到osipparser2/xxxxx.h头文件之类。
  
  处理:在Linux下,我们一般是将头文件,lib库都拷到/usr/inclue;/usr/lib之类的目录下,c源程序里直接写#i nclude <xxx.h>时,能直接去找到它们,在VC里,同样的,最简单的方法就是将oSIP2源码包中的Include目录下的osipparser2目录直接拷到我们的Windows下默认包含目录即可,这个目录在VC6的Tool-Options-Directories里设置,(当然,如果你知道这一步,也可以不用拷贝文件,直接在这里把oSIP源码包所在目录加进来就可以了),默认如果装在C盘,目录则为C:\Program Files\Microsoft Visual Studio\VC98\Include。

  这时,我们再次编译我们的工程,顺利编译,生成osipparser2.dll,这时,网上很多文档里可能直接就说,这一步也会生成libs目录,里面里osipparser2.lib文件,但我们这里没有生成:)
  
  最简单的方法,不用深究,直接再创建一个工程,同上述创建动态链接库方法,创建一个Win32静态链接库工程,直接编译,即可得到osipparser2.lib。

------------------------------------------------------
  上面,我们得到了Osip的解析器开发库,下面再编译完整的Osip协议栈开发库,同样照上述方法,分别创建动态链接库工程和静态链接库工程,只是要拷的文件换成src下的osip目录下文件和include下的osip目录,得到osip2.dll和osip2.lib。

  在编译osip2.dll这一步可能会再次得到错误,内容含义是找不到链接库,所以,我们要把前面编译得到的osipparser2.lib也拷到osip工程目录下,并在VC6中操作:
  Project-Setting-Link中的Object/Library Modules:
       kernel32.lib user32.lib ... xxx.lib之类的内容最后增加: osipparser2.lib
 
  保存工程后再次编译,即可成功编译osip2.dll。

------------------------------------------------------
  至此,我们得到了完整的oSIP开发库,使用时,只需在我们的程序里包含oSIP的头文件,工程的链接参数里增加osipparser2.lib和osip2.lib即可。


------------------------------------------------------
  下面我们验证一下我们得到的开发库,并大概了解一下OSIP的语法规范。
  在VC里创建win32控制台程序工程,将libosip源码包的SRC目录下的Test目录内的C源程序随便拷一个到工程时,直接编译(工程设置里照前文方法在link选项里增加osip2.lib,osipparser2.lib引用我们之前成功编译得到的静态库文件)就可以运行(带参数运行,参数一般为一个文本文件,同样从Test目录的res目录里拷一个与源文件同名的纯文本文件到工程目录下即可)。

  该目录下的若干文件基本上是测试了Osip的一些基本功能函数,例如URI解析之类,可以大概了解一下oSIP的语法规范和调用方法,同时也能校验一下之前编译的OSIP开发库能否正常使用,成功完成本项工作后,可以进入下一步具体的oSIP的使用学习了。

------------------------------------------------------
  由于oSIP是比较底层的SIP协议栈实现,新手较难上手,而官方的示例大都是一些伪代码,需要有实际的例子程序参考学习,而最好的例子就是同样官方发布的oSIP的扩展开发库exosip2,使用exoSIP可以很方便地快速创建一个完整的SIP程序(只针对性地适用于SIP终端开发用,所以我们这里只是用它快速开发一个SIP终端,用来更方便地学习oSIP,要想真正掌握SIP的开发,需要掌握oSIP并熟读RFC文档才行,exoSIP不是我们的最终学习目的),通过成功编译运行一个自己动手开发出的程序,再由浅入深应该是初学都最好的学习方法通过对使用exosip开发库的使用创建自己的SIP程序,熟悉后再一个函数一个函数地深入学习exosip提供的接口函数,就可以深入理解osip 了,达到间接学习oSIP的目的,同时也能从eXoSIP中学习到正确使用oSIP的良好的编程风格和语法格式。

  而要成功编译ExoSIP,似乎许多人被难住了,直接在XP-sp2上,用VC6,虽然你使用了eXoSIP推荐的winsock2.h,但是会得到一个sockaddr_storage结构不能识别的错误,因为vc6自带的开发库太古董了,需要升级系统的Platform SDK,下载地址如下:
  http://www.microsoft.com/msdownl ... PSP2FULLInstall.htm(VC6的支持已经停止,这是VC6能使用的最新SDK)
        
  成功安装后编译前需加OSIP_MT宏,以启用线程库,否则在程序中使用eXoSIP库时会出错,而编译时也会得到许多函数未定义的Warning提示,编译得到exosip2.lib供我们使用,当然,在此之前需要成功编译了osip2和osipparser2,而在之后的实际使用时,发现oSIP也需要增加OSIP_MT宏,否则OSIP_MT调用oSIP的线程库时会出错,所以我们需要重新编译oSIP了:),因为eXosip是基于oSIP的(同上方式创建静态和动态链接库工程,并需在Link中手工添加oSIP和oSIPparser的lib库)。

------------------------------------------------------
  创建新工程,可以是任意工程,我们从最简单的Win32控制台程序开始,为了成功使用oSIP,我们需要引用相关库,调用相关头文件,经过多次试验,发现需要引用如下的库:
         exosip2.lib osip2.lib osipparser2.lib WSock32.Lib IPHlpApi.Lib WS2_32.Lib Dnsapi.lib
  其中,除了我们上面编译得到的三个oSIP库外,其它库都是系统库,其中有一些是新安装的Platform SDK所新提供的。

  至此,我们有了一个简单的开发环境了,可以充分利用网上大量的以oSIP为基础的代码片段和官方说明文档开始具体函数功能的测试和使用了:)

------------------------------------------------------
  我们先进行一个简单的纯SIP信令(不带语音连接建立)的UAC的SIP终端的程序开发的试验(即一个只能作为主叫不能作为被叫的的SIP软电话模型),我们创建一个MFC应用程序,对话框模式,照上面的说明,设置工程包含我们上面得到的oSIP的相关开发库及SDK的一些开发库,并且由于默认LIBC的冲突,需要排除MSVCRT[D]开发库(其中D代表Debug模式下,没有D表示Release模式下),直接使用eXosip的几个主要函数就可以创建一个基本的SIP软电话模型。
  
  其主要流程为:
  初始化eXosip库-启动事件监听线程-向SIP Proxy注册-向某SIP终端(电话号码)发起呼叫-建立连接-结束连接

  初始化代码:
        int ret = 0;

        ret = eXosip_init ();
        eXosip_set_user_agent("##YouToo0.1");

        if(0 != ret)
        {
                AfxMessageBox("Couldn't initialize eXosip!\n");
                return false;
        }

        ret = eXosip_listen_addr (IPPROTO_UDP, NULL, 0, AF_INET, 0);
        if(0 != ret)
        {
                eXosip_quit ();
                AfxMessageBox("Couldn't initialize transport layer!\n");
                return false;
        }

  启动事件监听线程:
        AfxBeginThread(sip_uac,(void *)this);

  向SIP Proxy注册:
        eXosip_clear_authentication_info();
        eXosip_add_authentication_info(uname, uname, upwd, "md5", NULL);  
        
        real_send_register(30);  /* 自定义函数代码请见源码 */

  发起呼叫(构建假的SDP描述,实际软电话使用它构建RTP媒体连接):
        osip_message_t *invite = NULL;  /* 呼叫发起消息体 */
        int i = eXosip_call_build_initial_invite (&invite, dest_call, source_call, NULL, "## YouToo test demo!");
        if (i != 0)
        {
                AfxMessageBox("Intial INVITE failed!\n");
        }
        
        char localip[128];
        eXosip_guess_localip (AF_INET, localip, 128);
        snprintf (tmp, 4096,
                "v=0\r\n"
                "o=josua 0 0 IN IP4 %s\r\n"
                "s=conversation\r\n"
                "c=IN IP4 %s\r\n"
                "t=0 0\r\n"
                "m=audio %s RTP/AVP 0 8 101\r\n"
                "a=rtpmap:0 PCMU/8000\r\n"
                "a=rtpmap:8 PCMA/8000\r\n"
                "a=rtpmap:101 telephone-event/8000\r\n"
                "a=fmtp:101 0-11\r\n", localip, localip, "9900");
                                
        osip_message_set_body (invite, tmp, strlen(tmp));
        osip_message_set_content_type (invite, "application/sdp");
                                
        eXosip_lock ();
        i = eXosip_call_send_initial_invite (invite);
        eXosip_unlock ();                                
  
  挂断或取消通话:
        int ret;
        ret = eXosip_call_terminate(call_id, dialog_id);  
        if(0 != ret)
        {
                AfxMessageBox("hangup/terminate Failed!");
        }

 

http://www.onlyblog.com/blog2/zyjzyj2000/archives/2007/4944.html

Wednesday, June 13, 2007

深入研究 C++中的 STL Deque 容器

深入研究 C++中的 STL Deque 容器

 
本文档深入分析了std::deque,并提供了一个指导思想:当考虑到内存分配和执行性能的时候,使用std::deque要比std::vector好。

  
介绍

  本文深入地研究了std::deque 容器。本文将讨论在一些情况下使用
deque> 比vector更好。读完这篇文章后读者应该能够理解在容量增长的过程中deque 与vector在内存分配和性能的不同表现。由于deque> 和vector的用法很相似,读者可以参考vector 文档中介绍如何使用STL容器。

  Deque总览

  deque和vector一样都是标准模板库中的内容,deque是双端队列,在接口上和vector非常相似,在许多操作的地方可以直接替换。假如读者已经能够有效地使用vector容器,下面提供deque的成员函数和操作,进行对比参考。

  Deque成员函数

函数
描述
c.assign(beg,end)
c.assign(n,elem)
将[beg; end)区间中的数据赋值给c。
将n个elem的拷贝赋值给c。
c.at(idx)
传回索引idx所指的数据,如果idx越界,抛出out_of_range。
c.back()
传回最后一个数据,不检查这个数据是否存在。
c.begin()
传回迭代器重的可一个数据。
c.clear()
移除容器中所有数据。
deque<Elem> c
deque<Elem> c1(c2)
Deque<Elem> c(n)
Deque<Elem> c(n, elem)
Deque<Elem> c(beg,end)
c.~deque<Elem>()
创建一个空的deque。
复制一个deque。
创建一个deque,含有n个数据,数据均已缺省构造产生。
创建一个含有n个elem拷贝的deque。
创建一个以[beg;end)区间的deque。
销毁所有数据,释放内存。
c.empty()
判断容器是否为空。
c.end()
指向迭代器中的最后一个数据地址。
c.erase(pos)
c.erase(beg,end)
删除pos位置的数据,传回下一个数据的位置。
删除[beg,end)区间的数据,传回下一个数据的位置。
c.front()
传回地一个数据。
get_allocator
使用构造函数返回一个拷贝。
c.insert(pos,elem)
c.insert(pos,n,elem)
c.insert(pos,beg,end)
在pos位置插入一个elem拷贝,传回新数据位置。
在pos位置插入>n个elem数据。无返回值。
在pos位置插入在[beg,end)区间的数据。无返回值。
c.max_size()
返回容器中最大数据的数量。
c.pop_back()
删除最后一个数据。
c.pop_front()
删除头部数据。
c.push_back(elem)
在尾部加入一个数据。
c.push_front(elem)
在头部插入一个数据。
c.rbegin()
传回一个逆向队列的第一个数据。
c.rend()
传回一个逆向队列的最后一个数据的下一个位置。
c.resize(num)
重新指定队列的长度。
c.size()
返回容器中实际数据的个数。
C1.swap(c2)
Swap(c1,c2)
将c1和c2元素互换。
同上操作。

  Deque操作

函数
描述
operator[]
返回容器中指定位置的一个引用。

  上面这些特征和vector明显相似,所以我们会提出下面的疑问。

  问题:如果deque和vector可以提供相同功能的时候,我们使用哪一个更好呢?

  回答:如果你要问的话,就使用vector吧。

  或者你给个解释?

  非常高兴你这样问,的确,这并不是无中生有的,事实上,在C++标准里解释了这个问题,下面有一个片断:

  vector在默认情况下是典型的使用序列的方法,对于deque,当使用插入删除操作的时候是一个更好的选择。

  有趣的是,本文就是要非常彻底地理解这句话。

  什么是新的?

  细读上面两张表格,你会发现和vector比较这里增加了两个函数。

  1、c.push_front(elem) ―― 在头部插入一个数据。

  2、c.pop_front() ―― 删除头部数据。

  调用方法和c.push_back(elem)和c.pop_back()相同,这些将来会告诉我们对于deque> 会非常有用,deque可以在前后加入数据。>

  缺少了什么?

  同时你也会发现相对于vector> 缺少了两个函数,你将了解到deque> 不需要它们。

  1、capacity()―― 返回vector当前的容量。

  2、reserve() ―― 给指定大小的vector> 分配空间。

  这里是我们真正研究的开始,这里说明deque> 和vector它们在管理内部存储的时候是完全不同的。deque是大块大块地分配内存,每次插入固定数量的数据。vector是就近分配内存(这可能不是一个坏的事情)。但我们应该关注是,vector每次增加的内存足够大的时候,在当前的内存不够的情况。下面的实验来验证deque不需要capacity()和reserve()> 是非常有道理的。

  实验一 ―― 增长的容器

  目的

  目的是通过实验来观察deque和vector在容量增长的时候有什么不同。用图形来说明它们在分配内存和执行效率上的不同。

  描述

  这个实验的测试程序是从一个文件中读取文本内容,每行作为一个数据使用push_back插入到deque> 和vector中,通过多次读取文件来实现插入大量的数据,下面这个类就是为了测试这个内容:

#include <deque>
#include <fstream>
#include <string>
#include <vector>

static enum modes
{
 FM_INVALID = 0,
 FM_VECTOR,
 FM_DEQUE
};

class CVectorDequeTest
{
 public:
  CVectorDequeTest();
  void ReadTestFile(const char* szFile, int iMode)
  {
   char buff[0xFFFF] = {0};
   std::ifstream inFile;
   inFile.open(szFile);
   while(!inFile.eof())
   {
    inFile.getline(buff, sizeof(buff));
    if(iMode == FM_VECTOR)
     m_vData.push_back(buff);
    else if(iMode == FM_DEQUE)
     m_dData.push_back(buff);
   }
   inFile.close();
  }
  virtual ~CVectorDequeTest();
 protected:
  std::vector<std::string> m_vData;
  std::deque<std::string> m_dData;
};


  结果

  测试程序运行的平台和一些条件:

CPU 1.8 GHz Pentium 4
内存 1.50 GB
操作系统 W2K-SP4
文件中的行数 9874
平均每行字母个数
1755.85
读文件的次数
45
总共插入的数据个数 444330


  使用Windows任务管理器来记录执行效率,本程序中使用了Laurent Guinnard 的CDuration类。消耗系统资源如下图:


  注意在vector分配内存的最高峰,vector在分配内存的时候是怎样达到最高值,deque就是这样的,它在插入数据的同时,内存直线增长,首先deque的这种内存分配单元进行回收的话,存在意想不到的后果,我们希望它的分配内存看上去和vector一样,通过上面的测试我们需要进一步的测试,现提出一个假设:假设deque分配的内存不是连续的,一定需要释放和收回内存,我们将这些假设加入后面的测试中,但是首先让我们从执行的性能外表分析一下这个实验。

  究竟分配内存需要消耗多久?

  注意看下面这张图片,vector在不插入数据的时候在进行寻求分配更多内存。


  同时我们也注意到使用push_back插入一组数据消耗的时间,注意,在这里每插入一组数据代表着9874个串,平均每个串的长度是1755.85。

 
 
 

Thursday, June 07, 2007

虚析构函数

虚析构函数

在析构函数前面加上关键字virtual进行说明,称该析构函数为虚析构函数。例如:

 

    class B

    {

        virtual ~B();

       

    };

 

    该类中的析构函数就是一个虚析构函数。

 

    如果一个基类的析构函数被说明为虚析构函数,则它的派生类中的析构函数也是虚析构函数,不管它是否使用了关键字virtual进行说明。

 

    说明虚析构函数的目的在于在使用delete运算符删除一个对象时,能保析构函数被正确地执行。因为设置虚析构函数后,可以采用动态联编方式选择析构函数。

 

    下面举一个用虚析构函数的例子。

 

    #include <iostream.h>

 

    class A

    {

    public:

    virtual ~A() { cout<<"A::~A() Called.\n"; }

    };

 

    class B : public A

    {

    public:

    B(int i) { buf = new char[i]; }

    virtual ~B()

    {

        delete [] buf;

        cout<<"B::~B() Called.\n";

    }

    private:

    char * buf;

    };

 

    void fun(A *a)

    {

    delete a;

    }

 

    void main()

    {

    A *a = new B(15);

    fun(a);

    }

 

    执行该程序输出如下结果:

 

    B::~B() Called.

    A::~A() Called.

 

    如果类A中的析构函数不用虚函数,则输出结果如下:

 

    A::~A() Called.

 

    当说明基类的析构函数是虚函数时,调用fun(a)函数,执行下述语句:

 

    delete a;

 

    由于执行delete语句时自动调用析构函数,采用动态联编,调用它基类的析构函数,所以输出上述结果。

 

    当不说明基类的析构函数为虚函数时,delete隐含着对析构函数的调用,故产生

 

    A::~A() Called.

 

    的结果。

Tuesday, June 05, 2007

可变参数宏

在 GNU C 中,宏可以接受可变数目的参数,就象函数一样,例如:
#define pr_debug(fmt,arg...) \
printk(KERN_DEBUG fmt,##arg)



用可变参数宏(variadic macros)传递可变参数表
你可能很熟悉在函数中使用可变参数表,如:

void printf(const char* format, …);

直到最近,可变参数表还是只能应用在真正的函数中,不能使用在宏中。

C99编译器标准终于改变了这种局面,它允许你可以定义可变参数宏(variadic macros),这样你就可以使用拥有可以变化的参数表的宏。可变参数宏就像下面这个样子:

#define debug(…) printf(__VA_ARGS__)

缺省号代表一个可以变化的参数表。使用保留名 __VA_ARGS__ 把参数传递给宏。当宏的调用展开时,实际的参数就传递给 printf()了。例如:

Debug("Y = %d\n", y);

而处理器会把宏的调用替换成:

printf("Y = %d\n", y);

因为debug()是一个可变参数宏,你能在每一次调用中传递不同数目的参数:

debug("test"); //一个参数

可变参数宏不被ANSI/ISO C++ 所正式支持。因此,你应当检查你的编译器,看它是否支持这项技术。


用GCC和C99的可变参数宏, 更方便地打印调试信息


gcc的预处理提供的可变参数宏定义真是好用:
#ifdef DEBUG
#define dbgprint(format,args...) \
fprintf(stderr, format, ##args)
#else
#define dbgprint(format,args...)